2*x^2=(2.5)^2-4*2.5*x+4*x^2

Simple and best practice solution for 2*x^2=(2.5)^2-4*2.5*x+4*x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2*x^2=(2.5)^2-4*2.5*x+4*x^2 equation:



2x^2=(2.5)^2-4*2.5x+4x^2
We move all terms to the left:
2x^2-((2.5)^2-4*2.5x+4x^2)=0
We calculate terms in parentheses: -((2.5)^2-4*2.5x+4x^2), so:
(2.5)^2-4*2.5x+4x^2
determiningTheFunctionDomain 4x^2-4*2.5x+(2.5)^2
We add all the numbers together, and all the variables
4x^2-4*2.5x+6.25
Wy multiply elements
4x^2-8x+6.25
Back to the equation:
-(4x^2-8x+6.25)
We get rid of parentheses
2x^2-4x^2+8x-6.25=0
We add all the numbers together, and all the variables
-2x^2+8x-6.25=0
a = -2; b = 8; c = -6.25;
Δ = b2-4ac
Δ = 82-4·(-2)·(-6.25)
Δ = 14
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-\sqrt{14}}{2*-2}=\frac{-8-\sqrt{14}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+\sqrt{14}}{2*-2}=\frac{-8+\sqrt{14}}{-4} $

See similar equations:

| n²+17n=0 | | (x-3)(2x+1)+(2x+1)(4x+3)=0 | | 6k+3-3=27+3 | | 6k-3+3=27+3 | | 4q+8=48 | | 12+x*2=62 | | 20x+32=4 | | 40+x=120 | | –9w+1=–7−w | | x=1.5x+-4.5 | | 4x-3+3x^2=0 | | X+6/18=2(x/12) | | (3x+5)(8x+4)=0 | | 2x-10=3x+2 | | 3x+x+24=x | | 5(8x-3)=-5 | | 6(2x+6)=42 | | 2(4x-12)=48 | | 5(4a+4)=140 | | 330120/x=280.00 | | 0.32=2x/x | | 2f^2+1=4f | | 3x+2(4x-4)=4 | | x^2+45x-180=0 | | (1+n)^20=2 | | (5x-4)/(2x+1)-1=0 | | 42x+1=32 | | 7p+10=17 | | 6x+3=3x+1200 | | 50x+30x=120 | | x+153=40x | | 6x+640=3x-320 |

Equations solver categories